If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2+15=99
We move all terms to the left:
3u^2+15-(99)=0
We add all the numbers together, and all the variables
3u^2-84=0
a = 3; b = 0; c = -84;
Δ = b2-4ac
Δ = 02-4·3·(-84)
Δ = 1008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1008}=\sqrt{144*7}=\sqrt{144}*\sqrt{7}=12\sqrt{7}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{7}}{2*3}=\frac{0-12\sqrt{7}}{6} =-\frac{12\sqrt{7}}{6} =-2\sqrt{7} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{7}}{2*3}=\frac{0+12\sqrt{7}}{6} =\frac{12\sqrt{7}}{6} =2\sqrt{7} $
| -3+9g=60 | | -4x+8=-6(x-2) | | -8d=-7d-7d | | 1/2x-9=39 | | 12+q=56 | | 4(x-6)^2+5=105 | | 4(x-20)^2=25 | | 8.4x-5=20.2 | | –8d=–7d−7d | | 6x+x+1+7-36=0 | | x-3=14-3x | | 7x1=41 | | 11/5b+2=3/5b=10 | | v-19=-12 | | 50=50+45t-5t^2 | | –8d=–7d−7d= | | 11w+5w+4=360 | | 7x-5/24x=-2.4 | | 3/(12)=(2/3)/x | | 2d+3=6 | | 8x-(27-15)=44 | | 4x+8=-6(x-2) | | 4(3r+4)=−8(2r+5 | | 9c+1=100 | | 216^x=6^x+1 | | 2w+6=28 | | x+35=x-17=x-13 | | 8x-4=3x=11 | | x+35=x-17 | | 2x-6+117+3x+4=180 | | 64=7y+y | | -32=-8(10+b) |